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Outline
Q The Language of Mathematics: Logic and Sets.

e Mathematical Tools: Induction and Matrix Algebra.

@ Propositional Logic.

@ Valid Arguments.

@ Sets and Boolean Algebra.
@ Functions and Relations.

Examples of Algebraic Objects: Permutations and
Polynomials.

@ Composition of Functions.

@ Permutations.

@ Polynomials.

@ Factorisation of Polynomials.

@ Mathematical Induction.

@ Examples and Applications of Induction.
@ Determinants.

@ Eigenvalues and Eigenvectors.
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Introduction: The Language of Mathematics

Mathematics ...
. . The L f
@ ... is about solving problems. e
Logic and Sets.

@ ... explains patterns.

@ ... is a set of statements deduced logically from
axioms and definitions.

. uses abstraction to model the real world.

... employs a precise and powerful language to
organize, communicate, and manipulate ideas.

As with any language, in order to participate in a
conversation, it helps to be able to read and write.
In this section, we introduce basic elements of the
mathematical language and study their meaning:

@ logic: the language of mathematical arguments;

@ sets: the language of relationships between
mathematical objects.
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Links: The Language of Mathematics.

@ http: oL .

- . - . e Language o
//en.wikipedia.org/wiki/Mathematics_as_a_language Mathematics:

http://en.wikipedia.org/wiki/Knights_and_Knaves Logic and Sets.

Prc ogic

http://www.raymondsmullyan.com
http://www.iep.utm.edu/prop-log/ R
http://en.wikipedia.org/wiki/Mathematical_proof S
http://plato.stanford.edu/entries/boolalg-math/

http://en.wikipedia.org/wiki/Power_set

http://en.wikipedia.org/wiki/Equivalence_relation o

Permutations

http://en.wikipedia.org/wiki/Injective_function Polyno

http://en.wikipedia.org/wiki/Surjective_function

Summary

http://www-history.mcs.st—andrews.ac.uk/Biographies/
Smullyan.html is a biography of the American mathematician,
logician and magician Raymond Merrill Smullyan (1919-).

http://www-history.mcs.st-andrews.ac.uk/Biographies/
Boole.html is a biography of the British mathematician George Boole
(1815-1864).

@ http://www-history.mcs.st—-andrews.ac.uk/Biographies/

De_Morgan.html is a biography of the British mathematician
Augustus De Morgan (1806—1871).

Mathematical Inductior



http://en.wikipedia.org/wiki/Mathematics_as_a_language
http://en.wikipedia.org/wiki/Mathematics_as_a_language
http://en.wikipedia.org/wiki/Knights_and_Knaves
http://www.raymondsmullyan.com
http://www.iep.utm.edu/prop-log/
http://en.wikipedia.org/wiki/Mathematical_proof
http://plato.stanford.edu/entries/boolalg-math/
http://en.wikipedia.org/wiki/Power_set
http://en.wikipedia.org/wiki/Equivalence_relation
http://en.wikipedia.org/wiki/Injective_function
http://en.wikipedia.org/wiki/Surjective_function
http://www-history.mcs.st-andrews.ac.uk/Biographies/Smullyan.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Smullyan.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Boole.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Boole.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/De_Morgan.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/De_Morgan.html

MA180-4

Logic Puzzles.

@ Alogic puzzle is a riddle that can be solved by
logical thinking.

Propositional Logic.

Example (The Island of Knights and Knaves.)

@ A certain island has two types of inhabitants:
knights and knaves.

@ Knights always tell the truth.

@ Knaves always lie.

@ Every inhabitant is either a knave or a knight.
°

You visit the island, and talk to two of its inhabitants,
called A and B.

@ A says: “Exactly one of us is a knave”.
@ B says: “At least one of us is a knight.”
@ Who (if any) is telling the truth?



Systematical Solution: Table Method. VA1E04

@ For a systematical solution, use a truth table.
@ On the left, list all possible truth values of the claims

"X is a knight’ (T for ’true’, F for ’false’). Proposionsl Logc
Als a Bisa | Exactly oneis Atleastoneis
knight knight a knave a knight
T T F T
T F T T
F T T T
5 F 5 5

@ On the right, compute the corresponding truth
values of each of the statements.

@ X is a knight if and only if X speaks the truth.
Therefore the entry in the left column X is a knight’
must be equal to the right entry for X’s statement.

@ Here, row 4 contains the only match, hence the
unique solution of the puzzle.
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Further Examples.

@ You meet 2 inhabitants of the island.

A: Exactly one of us is a knight.
B: All of us are knaves. Proposiional Logic.

Who (if anyone) is telling the truth?

The following examples illustrate important points.

@ You meet 1 inhabitant of the island. ? A:T'" .
A: | am a knight. ¥ R
(There can be more than one solution.)
. . . AlA:.
@ You meet 1 inhabitant of the island. = =
A: | am a knave. F T

(No solution? This cannot happen.)



A Puzzle With More Than Two Inhabitants. ALeo

@ You meet 3 inhabitants of the island.

A: Exactly one of us is a knight.
B: All of us are knaves. Proposiiona Logic
C: The other two are lying.

Who (if anyone) is lying?

Solution
A B C|A:... B:... C:...
T T T IF F F
T T F| F F F
T F T| F F F
T F F T F F *
F T T| F F F
F T F T F F
F F T T F T
F F F IF T T




Symbols. A

Truth Values Logical Operations
T :true /\ :and (conjunction) s
F : false \/ : or (disjunction)

— : not (negation)

Variables
a,b,c,...,p,q,1,...: @ny statement

@ Let a stand for ’A is a knight’ and b for ’B is a knight.
@ Then —a means: A is a knave.

@ B’s statement: 'At least one of us is a knight’ (i.e., ’A
is a knight’ or ’B is a knight’) becomes: a \V b.

Note: V is an inclusive 'or’.
The disjunction p \V q allows for both p and q to be true.
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Propositional Logic.
@ Informally, a proposition is a statement that is
unambiguously either true or false.
@ A propositional variable is a symbolic name (like p, Proposiona Logic.
q, 1, ...) that stands for an arbitrary proposition.
@ Formally, a proposition is defined recursively:

Definition (Formal Proposition)

@ Any propositional variable is a formal proposition.
Moreover, if p and q are formal propositions, the following
compound statements are formal propositions:

@ the conjunction p A g (read: “p and q”),

stating that “both p and q are true”;

© the disjunction p \V q (read: “p or q”),

stating that “either p or q are true”;

Q the negation —p (read: “not p”),

stating that “it is not the case that p is true”.



Truth Tables. nAteo

@ A truth table shows the truth value of a compound
statement for every possible combination of truth
values of its simple components.

Propositional Logic.

P dlpANq P q[pVqg plP
T T T T 1] T T[T
T F| T T F| T FIT
FT| F FT| T
FF| F FF| F

Example (The truth table for (p V q) A—(p/\q).)
lpAq|-(PAQ) [pVa|(PVaA-(pAQ)

- S
m = T e
- ™ —
T = = =
- - —

o |

A truth table built from the tables of p A q, pV g and —p.
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Simplifying Negations.
@ In mathematics, propositions often involve formulas.

@ The negation of such a proposition can usually be
reformulated in simpler terms with different symbols. Al

Example

@ The negation of the statement “x < 18” is
“=(x < 18)”, or simply “x > 18”.

@ The negation of a conjunction is a disjunction(!)

Example (Truth tables for —(p A q) and (—p V —q).)

P q|lpAgq|-(pAg)|p|-q|PV—qg
T T T F F|F F
T F| F T FlT T
FT| F T T|F T
F F| F T T T T
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Logical Equivalence.

@ Two statements p and q are logically equivalent if
they have the same truth value for every row of the
truth table: We then write p = q. Propostional Logc

Theorem (DeMorgan’s Laws)
Letp and q be propositions. Then
Q@ (pPVa=-pA—q;
Q@ -(pNqg=-1pV—q.

@ A proposition p is a tautology, if its truth value is T,
for all possible combinations of the truth values of its
propositional variables: p = T.

@ A proposition p is a contradiction, if its truth value is
F, for all possible combinations of the truth values of
its propositional variables: p = F.

@ Every logical equivalence is a tautology.



Logical Equivalences.
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Theorem (for propositional variables p, g, r.)
All of the following are valid logical equivalences.

Propositional Logic.

Commutative Laws: p ANq=q/A\p,andpV q=qVp.

Associative Laws: (p A q) At =p A (q /A1),
and (pVq)Vr=pV(qVr).

Distributive Laws: p N\ (q V 1) = (p/Aq) V (p/Ar),
andpV (q/Ar) = (pVq) A (pVr).

Absorption Laws: p A (pVq) = p, andp V (p/\q) = p.
Idempotent Laws: p Ap =p, andp V p = p.
Complementary Laws: p A—p =F, andpV —p =T.
Identity Laws: p AT =p, andp \V F = p.

Universal Bound: p A\F=F,andpVT=T.

DeMorgan: =(p/\Nq) =—pV —q,and—(pV q) = —p N\ —q.
Negation: —T =F, and —F =T.

Double Negation: —(—p) = p.

Proof: truth tables. ]
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Sets.

@ A setis a collection of objects, its elements.
Notation. '

a € S means: object a is an element of the set S. And
a ¢ S means: object a is not an element of the set S.

@ Two sets A and B are equal (A = B) if they have the
same elements:
acBforalac Aandb € A for all b € B.

Examples

{0, 1},

N ={1,2,3,...} (the natural numbers),
{x € N|x is a multiple of 5},

@ ={} (the empty set).
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Predicates.
Definition
A predicate P(x) is a statement that incorporates a

variable x, such that whenever x is replaced by a value, Al
the resulting statement becomes a proposition.

Example
@ Suppose P(n) is the predicate “n is even”.
@ Then P(14) is the proposition “14 is even”.
@ The proposition P(13) is false.
@ P(22) is true.

@ Predicates can be combined using the logical
operators /A (and), V (or), — (not) to create
compound predicates.

@ A predicate can have more than one variable, e.g.,
P(x,y) can stand for the predicate “x < y”.



Quantified Predicates. e
Notation.
@ Suppose that P(x) is a predicate and that S is a set.
@ “Va € S,P(a)” is the proposition:
“for all elements a of S the statement P(a) is true”.

Propositional Logic.

@ “Ja € S,P(a)” is the proposition:
“there exists (at least) one element a in the set S
such that the statement P(a) is true”.

Suppose S ={x1,x2,...}
@ “Ya € S,P(a)” abbreviates “P(xq1) AP(xz2) A---".
@ “Ja € S, P(a)” abbreviates “P(x7) V P(x2) V ---".

Negating Quantified Predicates.
@ The negation of “vx € S, P(x)”is “Ix € S, =P (x)”;
@ the negation of “Ix € S, P(x)”is “Vx € S,—=P(x)".



Implications. e
Definition

An implication is a statement of the form “if p then q”.
In symbols, we write this as p — q (read: “p implies q”).
We call proposition p the hypothesis and

proposition q the conclusion of the implication p — q.

Valid Arguments.

@ The truth table of p — q has the form

P dlp—d
T 1] T
T F| F
FT| T
FF| T

Remark.

The only way for an implication p — q to be false is when
the hypothesis p is true, but the conclusion q is false.
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Converse, Inverse, Contrapositive.

Various variations of the implication p — q are of
sufficient interest:

@ q — p is the converse of p — q. Vel Argument
@ —p — —q is the inverse of p — q.
@ —q — —p is the contrapositive of p — q.

Remark.
@ An implication is logically equivalent to its
contrapositive: p — q = —q — —p.
@ The converse and the inverse of an implication are
logically equivalent: ¢ — p = —p — —q.
© But an implication is not logically equivalent to its
converse (and hence not to its inverse).

Proof: Truth tables. ]



Biconditional.

@ Write p +» q if both p — q and q — p are true.
@ Thenp«<q=(p—>q)/\(q—7p).

@ The truth table of p <+ q has the form

qlp—=dqla—=plpeg

P

T T T
T F| F
FT| T
FF| T

@ Usually, to prove a statement of the form p < q, one
proves the two statements p -+ qand q — p

separately.

Examples

@ n is even if and only of n? is even.
@ The integer n is a multiple of 10 if and only if it is

even.

T

— - —

—

MA180-4

Valid Arguments.
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Validating Arguments.

@ An argument is a list of statements, ending in a
conclusion.

@ The logical form of an argument can be abstracted
from its content.

Valid Arguments.

Definition
Formally, an argument structure is a list of statements
P1, P2, ---» Pns .. ¢ starting with premises p;y,...,pn and

ending in a conclusion c.

@ An argument is valid if the conclusion follows
necessarily from the premises.

@ Validity of arguments depends only on the form, not
on the content.

@ The argument structure ‘py, ..., pn, .. c is valid if
the proposition (p; /A --- A pn) — cis a tautology,
otherwise it is invalid.



How to Test Argument Validity. 55123

@ Identify the premises and the conclusion of the
argument.

© Construct a truth table showing the truth values of
all premises and the conclusion.

© A critical row is a row of the truth table in which all

the premises are true. Check the critical rows as
follows.

Valid Arguments.

© If the conclusion is true in every critical row then
the argument structure is valid.

© If there is a critical row in which the conclusion is
false, then it is possible for an argument of the given
form to have a false conclusion despite true
premises and so the argument structure is invalid.



Example of an Invalid Argument Structure.

Example

@ Premises:p1=(p—>qV-1),p2=(q—=>pATr).

@ Conclusion: ¢ = (p — 7).
@ The argument structure p1, p2, .. c is invalid:

-t qV—-r pAT

i IR I IR | B

AN e

T o=

e e e
= HH o
i B B I R

A4 4444 T—-3

s e I I I T N

MA180-4

Valid Arguments.
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Valid Arguments vs Invalid Arguments.

Some Valid Argument Forms.
@ Modus ponens: p — q, p, .. .
@ Modus tollens: p — q, —q, .". 7p. falanrouments
@ Generalization: p, ".p V q.
@ Specialization: p A q, .. p.
@ Conjunction: p, q, .. p/\ q.
@ Elimination: pVV q, —q, .. p.
@ Transitivity: p - q,q > 1,..p — 1.
@ Divisioninto cases: pV q,p > 1,9 —T1,..T.
@ Contradiction Rule: —p — F, . p.

Some Common Fallacies.
@ Converse fallacy: p — q, q, .". p.
@ Inverse fallacy: p — q, —p, .". —q.
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“All Humans Are Mortal.”

@ Modus Ponens: @ Modus Tollens:
P—4q,pP,.. Q. P—4q 7q .. 7P
Example Example
@ If Socrates is human @ If Zeus is human
then he is mortal. then he is mortal.
@ Socrates is human. @ Zeus is not mortal.
@ ... Socrates is mortal. @ .. Zeus is not human.
@ Proof by truth table: @ Proof by truth table:
P dlp—4q plqg P 4lp—q —q|p
T T T T|T T T T F
TF| F T TF| F T
F T T F FT| T F
F F| T F FFI T T|T



Fallacies. HATEoS

@ Converse Fallacy: @ Inverse Fallacy:

P—4d,q,..p. P—~4q,7p,..q.
Example (WRONG!) Example (WRONG!) Vet Avgoments.

@ If Socrates is human @ If Zeus is human
then he is mortal. then he is mortal.

@ Socrates is mortal @ Zeus is not human.

@ .. Socrates is human. @ ... Zeus is not mortal.

@ Truth table: @ Truth table:

P dlp—q q| p P qlp—=aq —p|—q

T T T T| T T T T F

T F| F F T F| F F

F T T T FW F T T T | F(D

FF| T F FFI T T |T



Knights and Knaves Revisited.

@ a ="Ais a knight'.
@ b ='B is a knight'.

Example

@ You visit the island of
knights and knaves
and find that:

a— —b
—a— b
b—aVb
—b — —a/\—b

(a ’formal version’ of
the original puzzle).

@ Who (if any) is telling
the truth?

Solution

Start with the
tautology a V —a.

Division into cases:
aV —a,

a — —b,

—a — —b,

.. b.

Modus ponens:

—b — —a /\ —b,
—|b,

. —a/\—b.

Both are knaves!

Valid Arguments.

This solution is a
formal version’ of the
original solution.

MA180-4
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Subsets and Set Operations.

@ A set B is a subset of a set A if each element of B is
also an element of A:
BCAifbeAforallb e B.

@ A=BifandonlyifBC A and A C B.

@ We assume that all our sets are subsets of a (big)
universal set, or universe .

Sets and Boolean Algebra.

Definition
Let A,B C U.
@ The union of A and B is the set
AUB={xeU:xe Aorxe B}

@ The intersection of A and B is the set
ANB={xeU:x e Aandx e B}.

@ The (set) difference of A and B is the set
A\B={xelU:x € A andx ¢ B}.

@ The complement of A (in U) is the set
Al={xelU:x¢gA}L
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Set Equations.

Theorem
Let A, B, C be subsets of a universal set U. Then all of

ANB=BNA, AUB=BUA, Sets and Boolean Algebra.
(ANB)NnC=AnN(BNC), (AUB)UC=AU(BUC),
AN(BUC)=(ANB)U(ANC), AU(BNC)=(AUB)N(AUC),
AN(AUB) =A, AU(ANB) =A,

ANA=A, AUA=A,

ANA' =g, AUA' =1,

ANU=A, AUZ =A,

ANG =g, AUU=1U,

(ANnB)=A"UB/, (AUB) =A'NnB/,
u =g, a'=U,
(A') =A

are valid properties of set operations.

Proof: element-wise. O



Boolean Algebra.

@ An example of abstraction in mathematics . ..

@ Sets (together with the operations N, U, /, and the
constants @, U) behave similar to

Propositions (together with the operations A, Vv, —,

and the constants F, T)

@ Both are examples of an abstract structure (with -,
+,’,and 0, 1) called a Boolean algebra

@ For any logical equivalence, there is a
corresponding set equality, and vice versa.

Duality
@ The dual of a set equality is obtained by
swapping N with U and swapping @ with U.

@ The dual of a valid set equality is also a valid set
equality ...

MA180-4

Sets and Boolean Algebra.



Sets of Sets. MA180-4

Definition

Let A be a set. The power set of A is the set
P(A)={B:B C A}

of all subsets B of A.

Sets and Boolean Algebra.

Example

The power set of A ={1, 3,5} is the set
P(A) ={=,{1}, {34 {541, 34{1,5} {3,541, 3,5}}

Definition
A partition of a set A is a set P = {Py, P2,...} of parts
P1,P2,... C A such that
@ no part is empty: P; # & for all i;
@ distinct parts are disjoint: P; N P; = & for all i # j;
© every point is in some part: A =P; UP, U---.
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Products of Sets.

Definition

The Cartesian product of sets A and B is the set
A xB={(a,b):ae Aandb € B}

of all (ordered) pairs (a,b). RTGEEETRE e

Examples
o A—{1,2,3,B = (X, Y}.
AxB= {(])X)) (]aY)) (Z)X)) (Z)Y)) (3)X)) (S)Y)}
oA :{])3} Az =AXA :{(])])>(133)) (3)])a (3)3)}

@ More generally, for n € N, the Cartesian product of n
sets $1,S,,...,S, is the set
S1 xSy x - xSy ={(x1,%2y...,Xn) 1 Xi € Si}
of all n-tuples (x1,x2,...,%n).

@ A=A x A x--- x A (nfactors).
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Relations are Sets.

@ A relation from a domain X to a codomain Y is a
subset R C X x Y.

Functions and Relations.

Notation.
Write xRy (and say “x is related to y”) for (x,y) € R.

@ Let Rbe arelationon X, i.e, RC X x X.

@ Ris reflexive if xRx for all x € X.

@ Ris symmetric if xRy then yRx for all x,y € X.

@ R is transitive if xRy and yRz then xRz, for all
x,Y,z € X.

@ Arelation R C X x X that is reflexive, symmetric and
transitive is called an equivalence relation.
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Equivalence Relations are Partitions.

@ Suppose R is an equivalence relation on a set X.
For x € X, denote by [x] = {y : xRy} the equivalence
class of x, i.e., the set of all y € X that x is R-related
to.

Also denote by X/R = {[x] : x € X} the quotient set,
i.e., the set of all equivalence classes.

Functions and Relations.

@ Suppose that P is a partition of X.
For x € X, denote by P(x) the unique part of P that
contains x.

Theorem
@ /fR is an equivalence relation on the set X, then the
quotient set X/R is a partition of X.
© Conversely, if P is a partition of a set X, then the
relation R = {(x,y) € X? : P(x) = P(y)} is an
equivalence relation.
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Functions are Relations are Sets.

@ A function f from a domain X to a codomain Y is a
relation f C X x Y, with the property that,

fOf evel'y X 6 X, Functions and Relations.
there is a unique y € Y such that (x,y) € f.

@ (This is often called the Vertical Line Test.)

Notation.
Write f: X — Y for a function f from Xto Y
and f(x) =y for the unique y € Y such that if (x,y) € f.

@ A function thus consists of three things: a domain X
and a codomain Y together with arule f C X x Y
that associates to each point x € X a unique value
f(x) =y €Y.
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Injective and Surjective Functions.

@ A function f: X — Y is called surjective (or onto) if,

foreveryy €,
there is at least one x € X such that f(x) = y.

@ A function f: X — Y is called injective (or
one-to-one) if,

Functions and Relations.

foreveryy €,
there is at most one x € X such that f(x) = y.

@ A function f: X — Y is called bijective (or a
one-to-one correspondence if it is both injective
and surjective, i.e., if,

foreveryy €,
there is a unique x € X such that f(x) = y.

@ A function is injective/surjective/bijective if it passes a
suitable Horizontal Line Test.
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Bijections of Partitions and Subsets.

@ Consider a function f: X — Y.

@ The image f(X) = {f(x) : x € X} is a subset of Y.

@ The relation ~; on X by x ~¢ x’ if f(x) = f(x/) is an
equivalence relation and the equivalence classes Functionsand Relators
[x] ={x’ € X: f(x) = f(x')} form partition X/~; of X,
called the kernel of f.

Theorem

@ Letf: X — Y. Then the function F: X/~¢ — f(X)
defined by F([x]) = f(x) forx € X is a well-defined
bijection between the kernel X /~¢ of f and the image
f(X) of f.

@ Conversely, ifY' C Y is any subset of Y, if ~ is any
equivalence relation on X and F: X/~ — Y’ is a
bijection then the rule f(x) = F([x]) defines a function
ffromXtoY.



Summary: The Language of Mathematics.

@ Formal propositions consist of propositional
variables, combined by the logical connectives
A (and), V (or), and — (not).

@ A truth table determines the truth value of a
proposition depending on the truth values of its
propositional variables.

@ Truth tables can validate and invalidate argument
structures.

@ Sets, with the operations N (intersection), U (union),
and ' (complement in a universal set U) form a
Boolean algebra, like the formal propositions with
their logical operations.

@ Claims about sets are proved by valid arguments.

Functions and relations are sets (of pairs).

@ A function is a one-to-one correspondence between
a partition of its domain and a subset of its
codomain.

MA180-4



Introduction: Permutations and Polynomials.

@ Certain types of functions occur frequently in
applications and form examples of important
algebraic structures.

@ Permutations of a set correspond to
rearrangements of its elements.

@ In Computer Science, permutations are used in the
study of sorting algorithms.

@ The product of two permutations is a composition
of functions.

@ Polynomials are linear combinations of powers of an

indeterminate x.

@ Solving polynomial equations is a central problem
in algebra.

@ Addition, multiplication and division of

polynomials share many properties with the
corresponding operations on the integers.

MA180-4

Examples of
Algebraic Objects:
Permutations and
Polynomials.



Links: Permutations and Polynomials.

http:
http:
http:
http:
http:
http:
http:

http:
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Composition of Functions.

@ The composition of relations R C X x Y and
S CY x Zis the relation S o R from X to Z defined by
x(S o R)z if xRy and ySz for some y €Y.

@ The composition of functions f: X — Y and
g: Y — Zis the function g o f: X — Z defined by
(gof)(x) =g(f(x)) forx € X.

Theorem

Composition of functions is associative:

(fog)oh=fo(goh).

Proof.

((fog)oh)(x) = (fog)(h(x)) =f(g(h(x)))
=f((goh)(x)) = (fo(goh))(x). O

@ The composition of functions f: X — X and g: X — X
is a function g o f from the set X to itself.

MA180-4

Composition of Functions.



Bijections and Inverse functions.

Example

Let X be a set. The identity function idx: X — X,
defined by idx (x) = x for all x € X, is a bijection.

@ If f: X — Y is a bijection there is a function g: Y — X
defined by g(y) =xif f(x) =y (i.e., gmaps y € Y to
the unique x € X that f maps to y.)

@ The function g is bijective as well and has the
property that g o f = idx (i.e., g(f(x)) = x for all
x € X)and fo g =idy (i.e. f(g(y)) =y forally €Y).

@ This function g is uniquely determined by f and
called the inverse of f.

Theorem
A function has an inverse if and only if it is a bijection.
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Composition of Functions.
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Permutations.
@ A permutation of a set X is a bijection from X to
itself.
@ Frequently, X ={1,2,...,n}forsome n € N.

Example (X ={1, 2, 3,4,5,6}.)

The relation 7 ={(1,2),(2,5),(3,3),(4,6),(5,1),(6,4)} on
X is a bijection, which is written in two-line-notation as
123 45 6 )

the permutatlon7r:<2 5361 4

@ There are n! =1-.2--.-n permutations of X if [X| = n.

@ The set S;, of all permutations of X ={1,2,...,n}is
called the symmetric group of degree n.

Example (n = 3.)

S5 =1{(123), (373), (337, (133), (333), 373} 1S5l = 3! = 6.
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Products of Permutations.

@ The product oo 7t of t, 0 € S,,, defined by
(ocom)(x) = o(m(x)), for x € X, is a permutation.

@ The inverse of m = (ng1 y ™ ) is the permutation

7t(n)
nl = (”2”- ™) since 1 o = idy.
@ An m-cycle (x1,x2,...,xm) permutes the m points
X1,X2,...,Xm € X cyclically.

@ Each permutation is a product of disjoint cycles.

Permutations.

Example
= (533835 = (1,2,5)(3)(4,6) = (1,2,5)(4,6).

@ The order of a permutation 7t is the smallest k € N
such that ¢ = momo--- o = idx.

@ An m-cycle has order m.
@ The order of t € S,, is the lcm of its cycle lengths.



Write a Permutation as Disjoint Cycles. VIATE0 ¢

Algorithm: Disjoint Cycles.
0. Consider all points x € {1,2,...,n} as “unmarked”.

1. If all points are marked: STOP
Otherwise, let x be the smallest unmarked point.

2. Determine its cycle

(%))

and mark all the points in the cycle.
3. Go back to step 1.

(%, 7e(x), 70

@ Here m? = mmom, & = mo k1.
@ Given 7t € S,,, what is the smallest k € N, such that
i =idx?

@ This k is called the order of 7.



Products of Transpositions. MA180-4

Examples
(1)2)71 - (1)2) and (1)2)(2)3) - (1)2>3)

@ A 2-cycle is called a transposition.

@ Each n-cycle is a product of transpositions:
(X1,%2y -+ oy xn) = (x1,%2) (X2, %X3) -+ (Xn—1,Xn ).

Theorem (Librarian’s Nightmare.)
Each permutation it € S,, is a product of tfranspositions

@ 1 € S, is called even (resp. odd) if it is a product of
an even (resp. odd) number of transpositions.

Fact.
A permutation 7t € S,, is either even or odd, but not both.



Groups MA180-4

@ The symmetric group S, is an example of a group.
@ In general, a group is defined by axioms.

Definition

A group is a set G, together with a binary operation

*: G x G — G such that:
(G1) Associative: (axb)xc =ax(bxc)forall a,b,c € G.

(G2) Identity: There exists an element e € G such that Permatns
axe=aandexa=aforall a e G.

(G3) Inverse: For each a € G there exists an element
a’ € Gsuchthataxa’=eanda’xa=e.

Examples

o (Z)+)a (Q’+)a (Q*a ')a (Zn)+)a (Z:L) '): ({i]}a ')a 50
@ The set of invertible 2 x 2-matrices over Q.
o (N,+4), (Z,-), (P(S),U), (P(S),N) are not groups.
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@ A group (G, *) is abelian (or commutative) if
axb=bxaforall abeG.

Definition

A ring is a set R together with binary operations + and
*: R x R — R such that (R, +) is an abelian group and:
(R1) (axb)xc=ax*(bxc)forall a,b,c € R.

(R2) There exists an element e € Rsuchthataxe=a
and exa =a forall a € R. e

(R3) ax(b+c)=axb+axcand
(a+b)xc=axc+bxrcforall a,b,c € R.

@ Aring (R, +, %) is called commutative if axb =bx a
forall a,b € R.

Examples
Z,Q, R, C, Zm, ..., the set of all 2 x 2-matrices over Q.
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Polynomials are like Numbers.
Definition
Suppose R is a commutative ring. A polynomial over R is
an expression of the form

1

p(x) =anx"+an_1x" '+ -+ a1x+ ap

mn
=ap+aix+ -+ an_1x" ' +ax™ = Z a;xt.
i=0

Polynomials.

for some integer n > 0, with coefficients
ap,a1y...,an € R(e.g. R=RorR=7%)

@ Two polynomials are equal if they have the same
coefficent at every power of x.

@ A polynomial p(x) defines a polynomial function
R — R by the rule a — p(a).

Distinct polynomials can define the same function.
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Rings of Polynomials.

@ The set of all polynomials over R is denoted by R[x].
@ Polynomials can be added:

(Z aixi) + <Z bixi> = Z(ai + by)xt

@ Polynomials can be multiplied:

Polynomials.

<Z aixi) (Z bixi) — ; ; a;bid t¥
- Z( > aibk>xi.

i j4k=i

@ R[x] is a commutative ring.
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Quotients and Roots of Polynomials.

@ A field is a commutative ring F, where each
a € F\ {0} has an inverse.

Examples
Q, R, C are fields, Z is not. Z., is a field if m is a prime.

Theorem
Suppose that F is a field.
@ (Division Theorem.) Let f, g € Fix] be polynomials
with g ;é 0. Then there exist unique polynomials Fonaman
q € F[x] (the quotient) and r € F[x] (the remainder)
with degr < deg g such that f = gq + .
@ (Remainder Theorem.) For any polynomial
f(x) € F[x] and a € F, the value f(a) is the remainder
of f(x) upon division by (x — a).
@ (Root Theorem.) a € F is a root of f(x) € Fx] if and
only ifx — a is a factor of f(x).
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Greatest Common Divisors.

@ Euclid’s Algorithm can be used to compute the ged
of two polynomials f and g.

Example
@ f=x>+1 GZg[X],g:X2+] € Z3[x].
@ xX°+1=x2+1)x>+2x)+ (x+1).
@ x2+1=(x+1)(x+2)+2
@ gcd(f,g) =2=—-1-1.

Factorisation of
Polynomials.

Example
@ f=x3+2x2+2€7Z3x], g =x*+2x+ 1 € Z3[x].
@ X3+ 2x2 +2=(x*+2x+1)x+ (2x + 2).
@ x2+2x+1=(2x+2)(2x+2)+0.
@ gcd(f,g) =2x+2=—1-(x+1).

@ gcd(f, g) can be computed without factoring f or g.



Irreducible Polynomials. MA180-4

@ Recall that, if f € F[x] thendegf < 0 if and only if fis
a constant polynomial, i.e. f € F.

@ A polynomial p € F[x] is irreducible if degp > 0 and
if p = fg for polynomials f, g € F[x] implies that either
degf=0o0rdegg =0.

@ Any nonzero polynomial f € F[x] is either irreducible
or it is a product of irreducible polynomials.

Theorem el

Letf e F[x]. Iff =p1p2---psandf=qiqz---q are two
factorizations of f into a product of irreducible
polynomials, then s = t, and up to rearranging the factors,
qi =T1ipi forsomer; e F,i=1,...,s.

@ Thus the factorization of a polynomial f into a product
of irreducible polynomials is essentially unique.
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Examples of Irreducible Polynomials.

@ f(x) =x—r € Flx] for any r € Fis irreducible.
@ f(x) =x? +bx +c € R[x] is irreducible if b% — 4c < 0.

Theorem (Fundamental Theorem of Algebra)

If f(x) € Clx] is a polynomial of degree n > 0 then f(x)
has a root in C.

@ Consequently, no polynomial f € C[x] with degf > 1
is irreducible.
@ No polynomial f € R[x] with degf > 2 is irreducible. Facorsaionf

Polynomials.

Proof.
Suppose deg f > 2. By the Fundamental Theorem, f(x)

has a complex root & € C. Note that f(x) = f(x).

f(a) = 0 implies f(&) = f(«) = 0 = 0. Hence both (x — «)
and (x — «) are factors of f(x). Suppose o« = a + bi.
Then (x — &) (x — &) = x? — 2ax + (a? + b%) € R[x] is an

irreducible factor of f(x). O
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Summary: Permutations and Polynomials.

@ Composition of functions is associative.

@ A permutation is a bijection from a set to itself.

@ A permutation is a product of disjoint cycles.

@ The cycle lengths determine the order of a
permutation.

@ A permutation has sign (—1)% if it is a product of
{ transpositions.

@ The permutations of the set {1,...,n} form the
symmetric group S,, with composition as product.

@ The polynomials over a commutative ring R forma |
commutative ring R[x].

@ Quotients and remainders of polynomials are
computed by long division.

@ A polynomial over a field is a product of irreducible
polynomials in an essentially unique way.

@ Every irreducible polynomial f € C[x] has degree 1.

@ Anirreducible polynomial f € R[x] has deg f < 2.



Introduction: Induction and Matrix Algebra e
@ Induction, in the experimental sciences, is a type of

reasoning used to infer an event from the

observation of past events.

@ Mathematics is an exact science, where this type of
reasoning is not considered valid.

@ Mathematical Induction is a technique used to
prove statements about natural numbers.

@ Here, properties of the numbers 1,...,n—1 are
used to prove a property of the number n.

@ The technique applies to theorems about numbers,

Mathematical

about polynomials, about matrices, ... Tool: Induction
X
@ Insights into properties of square matrices are Algebra.
obtained by computing their determinants and
eigenvalues.

@ Eigenvalues can be found as roots of the
characteristic polynomial of a matrix.



Links: Induction and Matrix Algebra.

http://oeis.org/search?g=2,4,8,16, 31
http://en.wikipedia.org/wiki/Mathematical_induction
http://www.cut-the-knot.org/induction.shtml
http://en.wikipedia.org/wiki/Determinant
http://mathworld.wolfram.com/Determinant.html
http://en.wikipedia.org/wiki/Adjugate_matrix
http://en.wikipedia.org/wiki/Minor_ (linear_algebra)
http:
//en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
http://mathworld.wolfram.com/Eigenvalue.html

http:
//en.wikipedia.org/wiki/Characteristic_polynomial
http://en.wikipedia.org/wiki/Cayley—-Hamilton_theorem
http://www-history.mcs.st-andrews.ac.uk/Biographies/
Cayley.html is a biography of the British mathematician Arthur
Cayley (1821-1895).
http://www-history.mcs.st—andrews.ac.uk/Biographies/

Hamilton.html is a biography of the Irish mathematician William
Rowan Hamilton (1805-1865).
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The Principle of Induction.

@ A statement about the natural numbers is a
predicate P(n) with domain N.

@ That is, when any natural number is substituted for n
then P(n) becomes a proposition, a statement that
is unambiguously true or false.

Principle of Mathematical Induction

Let P(n) be a statement about the natural numbers. If
@ P(1)is true, and
@ P(k) implies P(k + 1), for every integer k > 0,

then we can conclude that P(n) is true for every n € N.

Mathematical Induction.
@ P(1) is called the base case.

@ A proof that P(k) implies P(k+ 1) forall k > 0 is
called the induction step.
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An Example of Mathematical Induction.
1 ifn=1

@ Suppose that a,, =< ’ I =0
an_1+2n—1), ifn>1.

@ Claim: a, =n?foralln > 0.

Proof.
Let P(n) be the statement “a,, = n?".

Base Case. P(1) is the statement “a; = 12”.
P(1) is true since both a; = 1and 12 = 1.

Induction Step. Let k > 0.

Assume that P(k) is true, i.e., that aj = k2.

P(k + 1) is the statement “ay 1 = (k + 1)%".

By definition agx4+1 = ag + 2k + 1. e AT
Using P(k), conclude that a1 = k? + 2k + 1.

Now P(k + 1) is true since (k + 1)2 = k% + 2k + 1.

OJ

Consequently, P(n) is true for all n > 0.
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Variations of the Induction Theme.

@ Sometimes the base case is different from k = 1.

Let P(n) be a statement about the integers. If
@ P(1)is true for some 1 € Z, and
@ P(k) implies P(k + 1), for every integer k > 1,
then P(n) is true for every integer n > 1.

@ Sometimes it is necessary to assume P(m) for all
m < k in order to derive P(k + 1).
Let P(n) be a statement about the integers. If
@ P(1)is true, and

@ for every integer k > 1, the truth of P(m) forall 1 < m < k i, T
implies P(k + 1),

then P(n) is true for every integer n > m.
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Applications of Mathematical Induction.

Counting Subsets.

@ A set X of size n has exactly 2™ subsets:
X|=n = [P(X)| =2".

Sums of Integers, Squares, Cubes, ...
@ 1+2+ - +n=7Inn+1)foralneN.
° 12+22—|—~--+n2:%n(n—i—U(Zn—i—])forallnEN.
@134+234+...4n3=(1+4+2+---4+n)2forallneN.

Each Permutation is a Product of Transpositions.

@ (x1,X2y---y%n) = (x1,%2)(x2,%3) - - (Xn—1,%n).
The Roots of a Complex Polynomial.
@ If f(x) € C[x] is a polynomial of degree d, then f(x)
has exactly d (not necessarily distinct) roots.
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Determinants.
@ Recall |¢§|=ad—bc.
o And ‘ g E ﬂ — aei + bfg + cdh — afh — bdi — ceg.
9

@ Ingeneral, if A = (ay;) is an n x n-matrix then the
determinant of A is the number

det(A) = |A| = Z SigN(7t) a1 7(1)a2,7(2) * * * An,7(n)>
TTESH

a sum of n! terms.
@ This formula is used for theoretical purposes.
Properties of the Determinant.
@ det(AT) =det(A), where AT is the transpose of A.

@ det(AB) = det(A)det(B), if A and B are both n x n,
@ det(A) # 0 if and only if A is invertible.
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More about Determinants.

Further Properties of the Determinant.
@ det(l,) =1, where 1, is the n x n identity matrix.
@ det(A) = 0 if two rows of A are the same.
@ det(A) is linear in the ith row of A, for each i.

The Determinant under Row Operations.

@ If B is obtained from A by adding a multiple of row i
to row j, (j # 1) then detB = det A.
@ If B is obtained from A by multiplying row i with a
scalar c then detB = cdet A.
@ If B is obtained from A by swapping rows i and j
(j #1) then detB = —det A.



Cofactors. MA180-4

@ The minor matrix Ay; is obtained from A = (ay;) by
deleting its ith row and its jth column:

a Cl]j e QI
Al) = San| &5 S
Anl ... Qfj ... Qnn

@ The cofactor aj; of ai; in A is the number
I 1)1+ ..
aij = (=N ‘AU}'
Determinants.

@ [Al=anay; +anpaj; +--+anaq,.
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Example Determinant Calculation.

5 —2 4 —1
0 1 5 2
@A=17 2 0 1
-3 1 -1 1
@ (Al =5|Aq1]— (=2)[A12] +4[A13] — (=T1)|A14],
where
15 2
@ [Apyl=|2 0 1 :‘ﬂ ]'*5'31'+2'$701’:17574:78
111
0 52 11 1 0
@ [Apf=|1 01 :075’731‘+2‘7371‘:72072:722
—3 =7 1
o 12 11 12
@ Ail=|1211=0-1| 5 |+2|_57|=-4+14=10,
311
015
@ |Aul=120 :0_1‘_]3_01""5‘_13%‘:]"'35:36- Determinans.
—3 1 =1
@ SOIA|=5-(—8)+2-(—22)+4-10+36=-8.



The Adjoint of a Matrix.

@ For a square matrix A = (ayj) let A’ = (a{j) be the
matrix of cofactors af; = (—1)"J |Ay] of A.

@ The adjoint matrix A* of A is the transpose of A’:

A* = (AT,

Properties
@ AT A=A -A*=|A| I,
where [, is the n x n identity matrix.
@ Expansion by the rth row:
for each row index r
@ Expansion by the sth column:
Al = aisaj, + azsaj + -+ ansag,
for each column index s
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Determinants.



Upper Triangular Matrices. e
@ A square matrix U = (uy;) is called an upper

triangular matrix if u;; = 0 whenever i < j, i.e., if it

has the form

Ui w2 ... Wn

0 Up2 ... U2p
u=

0 ... 0 unn

@ The determinant of an upper triangular matrix U is
the product of its diagonal entries:

Ul =wjiuz2 -+ - Unn.

Proof.
by induction on n. O

Determinants.

@ A similar result holds for lower triangular matrices.
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Eigenvalues and Eigenvectors.

@ Any n x n-matrix A can be regarded as a linear
transformation on the vector space R™ which maps
a (column) vector v € R™ to the (column) vector
Av € R™.

@ A number A is an eigenvalue of A if there is a
nonzero vector v € R™ such that Av = Av.

@ The vector v is then called an eigenvector of A for
the eigenvalue A.

Example
2 2 1 4 1
JE IRy
@ Here the eigenvalue is A =4 and v = (}) is an e

eigenvector.
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Computing Eigenvalues.
@ Write Av=Avas Av—Av=0,0r (A —Al,)v=0,
where I, is the identity matrix.

@ A number A is an eigenvalue of A if and only if the
system (A — Al )v = 0 of linear equations has a
nontrivial solution v.

@ (A — Al )v = 0 has a nontrivial solution v if and only
if det(A —Al,) = 0.

Definition
The polynomial fa (x) = det(A — xI,,) is the
characteristic polynomial of the matrix A.

Theorem

A number A is an eigenvalue of the matrix A ifand only if e
A is a root of the characteristic polynomial f5 (x), i.e., S
fa(A)=0.



Computing Eigenvectors; Diagonalization.

@ To find an eigenvector v for an eigenvalue A solve
the system of linear equations (A — Al )v =0 forv
and find a nontrivial solution.

@ Let E be the matrix which has as its columns
eigenvectors vi,..., vy corresponding to the
eigenvalues Aq,..., A, of A.

@ Let D be the diagonal matrix with the eigenvalues
A1,...,An On its diagonal (and all other entries 0).

@ Then AE = ED.

@ If the eigenvalues are distinct then E is invertible
and A = EDE".

Example

2271 [1 20[4 o 1 21" e
3171 =30 1|1 =3 -



Properties of Eigenvalues and Eigenvectors. MATEO 4
Suppose A is an n x n matrix.

@ det A equals the product of the eigenvalues; and
trace A = a1 + a2 + - - - + ann €quals their sum.

If A'is an eigenvalue of A with eigenvector v then

@ Ak is an eigenvalue of the kth power A with the
same eigenvector v.

e if the inverse A—! exists, A~ is an eigenvalue of
A~ with the same eigenvector v.

@ A+ pis an eigenvalue of A + ul,, with the same
eigenvector v.

Moreover,
@ A and its transpose A ' have the same eigenvalues;

@ if P is an invertible matrix then P~'AP and A have Eigomlues and
. Eigenvectors.
the same eigenvalues.



Summary: Induction and Matrix Algebra.
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Mathematical induction is a powerful tool to prove
statements about the natural numbers.

A proof by mathematical induction constists of 1. the
explict verification of a base case, 2. an induction
step that derives the next case from previous cases.

An eigenvalue of a square matrix A is a number A
such that Av = Av for some vector v # 0.

An eigenvector of a square matrix A is a vector

v #£ 0 such that Av = Av for some number A.

The eigenvalues of A are the roots of the
characteristic polynomial det(A — Al,,) of A.

An eigenvector for the eigenvalue A is a nontrivial
solution x of the system (A — Al )x = 0.

If the eigenvalues of A are distinct, the
corresponding eigenvectors form an invertible matrix B
E which diagonalizes A as A = EDE~'.
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Course Summary and Outlook.

@ Logic and Set Theory form the basis of the
language of mathematics.

@ Properties of functions and relations are studied in
Discrete Mathematics (MA284).

@ Permutations are examples of group elements.

@ Groups are studied in Group Theory: (MA3343,
MA4344).

@ Polynomials (with coefficients from a field) and
matrices are examples of ring elements.

@ Rings and Fields are studied in Abstract Algebra:
(MA416, MA3491).

@ Matrices act as linear transformations on vectors.

@ Linear transformations on vector spaces are
studied in Linear Algebra (MA283).
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